Belief Network Algorithms: A Study of Performance
نویسنده
چکیده
Belief Updating Algorithms There are several algorithms for exact belief updating, for example, the polytree algorithm, clustering (Pearl 1988) or the Jensen tree method (Jensen, Lauritzen, & Olesen 1989). However, approximate methods are often preferred because the complexity of exact updating is NP-hard. Approximate updating is usually done by stochastic simulation (Pearl 1988). Variants include likelihood weighting, survival-of-the-fittest and Markov Chain Monte Carlo methods. Another approach to complexity reduction is to approximate the model by simplifying the network. Some of the existing methods do this by state-space abstraction, removal of weak links, replacing small probabilities with zero and graph pruning. Such procedures may be applied individually or in combination.
منابع مشابه
Green Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling
With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملReliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملBelief Network Inference Algorithms: a Study of Performance Based on Domain Characterisation
In recent years belief networks have become a popular representation for reasoning under uncertainty and are used in a wide variety of applications. There are a number of exact and approximate inference algorithms available for performing belief updating, however in general the task is NP-hard. To overcome the problems of computational complexity that occur when modelling larger, real-world pro...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996